
COMPUTER ARCHITECTURE EVALUATION FOR

STRUCTURAL DYNAMICS COMPUTATIONS

Final Technical Report

Project Summary

Principal Investigator:

Dr. Hilda M. Standley

Department of Computer Science

February i0, 1986- August 7, 1989

The University of Toledo

Toledo, Ohio 43606

NASA Lewis Research Center

Grant Number: NAG 3-699

(N A" A-C"-'-] _ q I z r) Cr]MPUr i_:p _.i'tC i'il[T _-C T tJ-_iz

LVALU_,TI_)H Fj_ _TPUCTU_AL L_YC,,IAMILR

CO!,iOLITATI<_i,S: ?__:J_:CT ._LI_a_Ac>Y rirl_l

rr, c_l_icrl _,-'i._-_i"tt 10 r-',<_h. I(Q'_: - T AUI. l'gciQ

tlol_o univ.) in _, C.qOL q_P n31uO

ABSTRACT

The intent of the proposed effort is the examination of the impact of the elements

of parallel architectures on the performance realized in a parallel computation. To this

end, three major projects are developed: a language for the expression of high-level

parallelism, a statistical technique for the synthesis of multicomputer interconnection

networks based upon performance prediction, and a queueing model for the analysis of

shared memory hierarchies.

INTRODUCTION

Parallel computer architectures, both commercial and theoretical, are proliferating

as the speed advantages of parallel computation are recognized. New architecture

designs may be classified as fundamentally "traditional" in which an old design is given a

slight modification or "radical" in which the standard approach is discarded in favor of an

entirely new design. The fact remains that, because of the lack of a well developed,

disciplined approach, computer architecture design today is very much trial and error. A

design is produced and then evaluated to determine how good it is.

This study considers a variety of parallel architectures and selects two

architectural elements having profound impact on performance, one from each of two

diverse architectural classes. Models are developed by which the performance for these

architectures may be predicted. In one case the performance of interconnection

networks, described by graphical properties, may be predicted through a statistical

analysis of the data collected about existing networks. In the other case, the performance

of a shared memory multiprocessor with a memory hierarchy component is modeled

analytically.

Relative to a11 large-grained parallel computation, a high-level parallel language,

EASY-FLOW is developed to assist with the expression of parallel tasks in the context of

traditional programming languages.

A HIGH-LEVEL PARALLEL LANGUAGE

Softwarefor computers offering parallel computation must provide the level of

parallelism specific for the target architecture, designating a point on the spectrum from a

high-level multiple task model to low-level bit operations. The effort in this project is

directed toward the former parallel model which is specific to the message passing,

multicomputer architecture. A high-level parallel language is developed based upon the

data flow schema of data-dependency directed execution, incorporating the three

fundamental models of control directed execution: sequencing, branching, and looping.

Data flow computing is based upon the notion that the execution of a computation

may be initiated by the availability of data, instead of by a sequence determined from the

"flow of control." Data values "flow" between computations, triggering executions

which consume input data and produce output data as results. Results that are produced

at one computation may be consumed at a subsequent computation, establishing a data

dependency between the two computations. Computations that are data dependent are

constrained to execute in sequence. Other computations not so constrained may be

executed in parallel.

The objectives of this language design project are to: (1) develop a language that

requires little retraining of conventional language programmers, (2) provide for the reuse

of existing software libraries, and (3) expose potential parallelism both implicitly and

explicitly at varying levels of procedural computation. To this end the EASY-FLOW

language is developed.

The basic unit of computation in EASY-FLOW is the atomic unit (atomic since it

has no substructure) supplied by a subprogram written in a conventional high-level

language (e.g. FORTRAN, C). The program notation provided by EASY-FLOW gives a

superstructure located conceptually above the subprograms and relates them by explicitly

expressed data dependencies. Units, other than atomic, may have a substructure

consisting of other units related by data dependencies.

The EASY-FLOW notation provides information which may be used in

scheduling the execution of units. Units which are not constrained by data dependencies

may be scheduled to execute in parallel or overlapping in time. The data dependencies

are made clear by the "single assignment" rule: any name in an EASY-FLOW program

isassociatedwith only onevaluethroughoutexecution.As anexceptionto this rule, the

looping constructallows for the convenientupdateof a nameusedin iteration, but this

may be done only in specifically isolated instanceswhich are clearly marked in the

program.

While theEASY-FLOW statementsallow for theschedulingof unitsor tasks,the
atomic units provide for the computationspecified in the program. Data values as

parametersarepassedby assigningtheir valuesto actualparametervariablesto beused

in a subprogramcall. Upon returning from the call, assignmentsare made from the

returningparametersto EASY-FLOW variablenames,thus shielding the EASY-FLOW

variablesfrom alterationwithin thesubprogram.

An EASY-FLOW compilerhasbeenwritten thatproducessequentialFORTRAN

code(in order to determinefeasibility) for usewith FORTRAN subprograms.The data

flow graph produced by the compiler is made sequential through application of a

topological sort. A compiler to produceparallel FORTRAN code for a Transputer

systemis currentlyin progress.

MULTICOMPUTER NETWORK SYNTHESIS

Inter-task communication in a multiprocess computation may dominate

processing time and determine in large part the performance realized. In a multicomputer

system, the interconnection network linking the processing elements provides the

pathways for messages passed between tasks residing on separate processors. An

interconnection network that closely fits the pattern of interprocess communication will

clearly assist in alleviating the communications overhead. The alternative situation, one

in which the communications requirements of the application must be mapped to a

dissimilar interconnection network by mapping multiple edges to single physical

communication links or mapping single edges to paths passing through multiple

processing elemnets, may cause delays due to resulting bottlenecks.

Previousinterconnectionnetwork designs have incorporated a regular network

which matches to a degree the pattern of intertask communications. The selection of the

network structure has been an intuitive decision based upon the experience of the

designer. As an alternative, this project examines the use of statistical and optimization

techniques used in the modeling and synthesis of interconnection networks. This

approach represents a way to compare elements of diverse interconnection network

designs in a way that allows the synthesis of networks by selection of the best elements

of existing designs and other, perhaps hybrid, networks that may offer better

performance.

A multidimensional solution space is constructed by considering the performance

(the dependent variable) of existing networks along with both quantitative and qualitative

characteristics (the independent variables) of graphs. Such characteristics may include

graph size, average degree, diameter, radius, girth, node-connectivity, edge-connectivity,

minimum dominating set size, and maximum number of prime node and edge cutsets.

Network performance may be described by the average message delay or the ratio of

message completion rate to network connection cost. By using the method of stepwise

linear regression, a polynomial surface is developed in the solution space. Optimization

techniques such as response surface methodology or steepest ascent path may then be

used to optimize the performance variable from the polynomial surface.

Screening of the relatively large number of independent variables may eliminate

those that contribute little to the dependent variable value. An optimization technique is

used to determine local or global points of "optimum" network performance. An

"optimum" point is an indication of an "ideal" interconnection network, based upon the

values of the various independent variables. The gradient vector for an optimum point

which does not have corresponding realistically-valued independent variable values may

indicate general trends or direction(s) of greatest increase in the value of the dependent

(performance) variable.

The optimization process produces a ranking of desirable characteristics and their

suitable levels. "Optimal" network synthesis will not follow directly from this. The

information in the ranking will assist the designer in the design process, perhaps

indicating unconventional directions in the choice of network elements.

QUEUEING MODEL FOR SHAREDMEMORY HIERARCHIES

Interferencebetweenprocessorsissuing requeststo a sharedmemorymay be a
major factor in limiting performancein a shared memory multiprocessor system.

Simultaneousrequeststo a single memorymodulecannotbe servicedsimultaneously.

Only one requestmay be served,requiring the others to wait under some queueing

scheme. Memory requestswaiting in a queue translateto processorsblocked from

computationandaconsequentialdegradationin achievedperformance.

The queueingmodel presentedis one for a hierarchyof memorymodules. A

hierarchy representsa realistic view of sharedmemory organization,with relatively
small, high speedmemories at the direct accesslevel and larger, slower response

memoriesorganizedat moreremotelevelsof access.

An analytical model is developed, based upon a general queueing model. The

mean waiting time for a request from a processor to be served at a memory module is

calculated, including the time spent in a queue awaiting service and the time required to

retrieve the data from the memory module. Queueing delay is based on an estimate of

queue length and the average service time for a memory module access. From this the

expected number of busy memories is computed and used as the measure of system

performance. Analytic results are compared with simulated results for several systems

differing in the relative numbers of processors and memory modules and the correlation

found to be high.

7

APPENDIX A--EASY-FLOW GRAMMAR

Modified 2/1/89

1) <program> ..-"- <unit>

2) <unit> "'-..- unit <id> :

<possible declarations>
input : <list>

<body of unit>

output : <list>
¢ndunit <id>

Note: input and output are important enough, it was decided to require them even if no explicit ldO is
called for.

Semantics: Make note of the unit id. Record declarations in symbol table (associate them with this

unit). Record input list and output list, associated with this unit.

3) <possible declarations> ::=

4) <list> "-.,-

5) <more list> ..-"-

6) <body of unit> ::--

7) <subprogram> ::--

8) <if unit> ::--

declare : <declarations list> I nil
<id> <more list> I nil

,<id.><more list>lnil

<subprogram> I
<if unit> I

<iter unit> I
<distribute unit> I
<unit set>

into : <pairs> <subprogram call> outof:<pairs>

if <boolean exp>
then <unit set>

else <unit set>

Note: <boolean exp> is treated as a subprogram call for now (see grammar). "Unitsets" used here

because unit would require another input/output pair and this is already provided by the enclosing unit.

9) <iter unit> "-..- iter <boolean exp>
do <unit set>

reassign <pairs>

Semantics: Process boolean expression same as above (see <if unit>).

I0) <distribute unit> ::= distribute <id> = <range>
<unit set>

11) <unit set> ::= <unit> <unit set> I nil

Note: a <unit set> may be nil.

12) <boolean expression> ::= <subprogram>

13) <pairs> ::= <match><palrs>l nil

Note: <pairs> may be nil.

14) <range> ..-"-

15) <match> "'-..-

16) <subprogram call> ..-"-

17) <optional parameters> ..-'--

<const> .. <const>

<variable id> => <variable id>

subprogram <id> <optional parameters>

(<svariable list>) Inil

18) <declarations list> ::---

Note:

19) <dvariable list>

20) <dvariable id>

21)

22) <svariable list> "'-..-

23) <more svariable list> ::=

24) <variable id> ::=

25) <optional subscript list> ::=

26) <subscript list> ..-"-

27) <more subscript list> ::=

28) <cid> ::=

29)

30)

31)

real <dvariable list> <declarations list>l

integer <dvariable list><declarations list>/
boolean <dvariable list><declarations list>[

double precision <dvariable list><declarations list>lnil

The nil above allows declare: <nil>. This is OK to emphasize no declarations!

::- <dvariable id><more dvariable list>

::= <id><optional dimension list>

<more dvariable list> :>, ,<dvariable id><more dvariable list>lnil

<optional dimension list> ..-"-

<dimension list> ::=

<more dimension list> ::=

<variable id><more svariable list> Inil

,<variable id><more svariable list>lnil

<id><optional subscript list>

(<subscript list>)lnil

<cid> <more subscript list>

,<cid><more subscript list>lnii

<variable id>l<const>

(<dimension list>)lnil

<const><more dimension list>

,<const><more dimension list>lnil

9

Note"

Note:

Three kinds of variable list are provided for:

lo

2.

3.

<variable id> allows any subscripts (not only constants).

Used in declarations and allow only constant dimensions.<dvariable list>

Used in input/output lists in units. For now, no subscripts are allowed.<list>

Other places allow subscripts.<svariable list> (most genera!).

<id> is any unsubscripted id (or simple id).

l0

APPENDIX B--BIBLIOGRAPHIC REFERENCES

(Copies attached.)

"A General Model for Memory Interference in A Multiprocessor System with

Memory Hierarchy," Badie A. Taha, Hilda M. Standley, 1989 International Conference

on Parallel Processing, pp. 1-225--I-232, August 8-12, 1989.

"Adapting High-Level Language Programs for Parallel Processing Using Data

Flow," Lewis Structures Technology--1988, NASA Conference Publication 3003, Vol. 1,

pp. 103--111, May 24-25, 1988.

"Modeling and Synthesis of Multicomputer Interconnection Networks," Hilda M.

Standley and D. Steve Auxter, Technical Report, Dept. of Computer Science and

Engineering, 1988.

"Multiprocessor Architecture: Synthesis and Evaluation," NASA Langley

Workshop on Computational Mechanics, November 1987.

"A Very High Level Language for Large-Grained Data Flow," 1987 ACM

Fifteenth Annual Computer Science Conference, pp. 191-195, February 1987.

